Extensions 1→N→G→Q→1 with N=C32 and Q=C6.D4

Direct product G=N×Q with N=C32 and Q=C6.D4
dρLabelID
C32×C6.D472C3^2xC6.D4432,479

Semidirect products G=N:Q with N=C32 and Q=C6.D4
extensionφ:Q→Aut NdρLabelID
C32⋊(C6.D4) = C62.4D6φ: C6.D4/C22D6 ⊆ Aut C3272C3^2:(C6.D4)432,97
C322(C6.D4) = S32⋊Dic3φ: C6.D4/C6D4 ⊆ Aut C32244C3^2:2(C6.D4)432,580
C323(C6.D4) = C623C12φ: C6.D4/C23S3 ⊆ Aut C3272C3^2:3(C6.D4)432,166
C324(C6.D4) = C624Dic3φ: C6.D4/C23S3 ⊆ Aut C3272C3^2:4(C6.D4)432,199
C325(C6.D4) = C6211Dic3φ: C6.D4/C2×C6C4 ⊆ Aut C32244C3^2:5(C6.D4)432,641
C326(C6.D4) = C62.77D6φ: C6.D4/C2×C6C22 ⊆ Aut C32144C3^2:6(C6.D4)432,449
C327(C6.D4) = C62.84D6φ: C6.D4/C2×C6C22 ⊆ Aut C3248C3^2:7(C6.D4)432,461
C328(C6.D4) = C3×D6⋊Dic3φ: C6.D4/C2×Dic3C2 ⊆ Aut C3248C3^2:8(C6.D4)432,426
C329(C6.D4) = C62.78D6φ: C6.D4/C2×Dic3C2 ⊆ Aut C32144C3^2:9(C6.D4)432,450
C3210(C6.D4) = C3×C625C4φ: C6.D4/C22×C6C2 ⊆ Aut C3272C3^2:10(C6.D4)432,495
C3211(C6.D4) = C63.C2φ: C6.D4/C22×C6C2 ⊆ Aut C32216C3^2:11(C6.D4)432,511

Non-split extensions G=N.Q with N=C32 and Q=C6.D4
extensionφ:Q→Aut NdρLabelID
C32.(C6.D4) = C62.27D6φ: C6.D4/C23S3 ⊆ Aut C3272C3^2.(C6.D4)432,167
C32.2(C6.D4) = D6⋊Dic9φ: C6.D4/C2×C6C22 ⊆ Aut C32144C3^2.2(C6.D4)432,93
C32.3(C6.D4) = C3×C18.D4φ: C6.D4/C22×C6C2 ⊆ Aut C3272C3^2.3(C6.D4)432,164
C32.4(C6.D4) = C62.127D6φ: C6.D4/C22×C6C2 ⊆ Aut C32216C3^2.4(C6.D4)432,198

׿
×
𝔽